Impact ionization and transport properties of hexagonal boron nitride in a constant-voltage measurement
نویسندگان
چکیده
منابع مشابه
Charge carrier transport properties in layer structured hexagonal boron nitride
Due to its large in-plane thermal conductivity, high temperature and chemical stability, large energy band gap (~ 6.4 eV), hexagonal boron nitride (hBN) has emerged as an important material for applications in deep ultraviolet photonic devices. Among the members of the III-nitride material system, hBN is the least studied and understood. The study of the electrical transport properties of hBN i...
متن کاملElectrical transport properties of Si-doped hexagonal boron nitride epilayers
The suitability of Si as an n-type dopant in hexagonal boron nitride (hBN) wide bandgap semiconductor has been investigated. Si doped hBN epilayers were grown via in-situ Si doping by metal organic chemical vapor deposition technique. Hall effect measurements revealed that Si doped hBN epilayers exhibit n-type conduction at high temperatures (T > 800 K) with an in-plane resistivity of ∼12 · cm,...
متن کاملOptoelectronic properties of hexagonal boron nitride epilayers
This paper summarizes recent progress primarily achieved in authors’ laboratory on synthesizing hexagonal boron nitride (hBN) epilayers by metal organic chemical vapor deposition (MCVD) and studies of their structural and optoelectronic properties. The structural and optical properties of hBN epilayers have been characterized by x-ray diffraction (XRD) and photoluminescence (PL) studies and com...
متن کاملVertical transport in graphene-hexagonal boron nitride heterostructure devices
Research in graphene-based electronics is recently focusing on devices based on vertical heterostructures of two-dimensional materials. Here we use density functional theory and multiscale simulations to investigate the tunneling properties of single- and double-barrier structures with graphene and few-layer hexagonal boron nitride (h-BN) or hexagonal boron carbon nitride (h-BC2N). We find that...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physical Review B
سال: 2018
ISSN: 2469-9950,2469-9969
DOI: 10.1103/physrevb.97.045425